
Alan Turing Institute – Scottish Enterprise 
Analysing Humanities Data using Cray 

Urika-GX 
 

Rosa Filgueira, Mike Jackson 

Alan Turing Institute / EPCC, The University of Edinburgh  

31st July 2018 

 

1. Introduction 
In this report we describe work done to date in conjunction with Melissa Terras, College of Arts, 
Humanities and Social Sciences (CAHSS)1, The University of Edinburgh. This work looked at deploying 
data hosted by CAHSS within the Alan Turing Institute’s Cray Urika-GX system and running text 
analysis codes, developed by University College London (UCL), upon these. The codes were 
suggested by both Melissa and Raquel Alegre, of Research IT Services, at UCL. The motivation for this 
work was that the data and codes would serve as a real-world example to exercise the Alan Turing 
Institute’s Cray Urika-GX system’s data transfer and data analysis services. 

This work was funded by Scottish Enterprise as part of the Alan Turing Institute-Scottish Enterprise 
Data Engineering Program. 

2. About the Cray Urika-GX system 
The Cray Urika GX system 2 3 4 is a high-performance analytics cluster with a pre-integrated stack of 
popular analytics packages, including Apache Spark5, Apache Hadoop and Jupyter notebooks6, all 
managed using the Apache Mesos7 resource manager. These are complemented with myriad tools 
and frameworks to allow data analytics applications to be developed in Python, Scala, R and Java. 

The Alan Turing Institute’s deployment of the Cray Urika GX system (hereon termed Urika) includes 
12 compute nodes (each with 2x18 core Broadwell CPUs), 256GB of memory and 60TB of storage 
(within a Lustre high-performance parallel file system) and 2 login nodes. Both compute and login 
nodes run the CentOS 7.4 operating system. 

 

                                                           
1 https://www.ed.ac.uk/arts-humanities-soc-sci  
2 https://www.cray.com/products/analytics/urika-gx  
3 https://ati-rescomp-service-docs.readthedocs.io/en/latest/cray/introduction.html  
4 https://www.epcc.ed.ac.uk/facilities/other-facilities/cray-urika-gx  
5 https://spark.apache.org  
6 http://jupyter.org  
7 http://mesos.apache.org  



3. Data  
The data, hosted at the University of Edinburgh within the University’s DataStore8 provided by 
Information Services’ Research Data Services, are as follows. 

3.1. British Library Newspapers 

The British Library Newspapers data 9 10 is from Gale11, a division of CENGAGE12 . The data is licenced 
and has restrictions on how it can be shared. Within the University, the data is managed by the 
University Library13. The complete data consists of ~1TB of digitised versions of newspapers from the 
18th to the early 20th century. Each newspaper has an associated folder of XML documents where 
each XML document corresponds to a single issue of the newspaper. Each XML document conforms 
to a British Library-specific XML schema. 

3.2. British Library Books 

The British Library Books data14 15 is also provided by Gale. The data is available under an open, 
public domain, licence. Within the University, the data is managed by CAHSS16. 

The complete data consists of ~1TB of digitised versions of ~68,000 books from the 16th to the 19th 
centuries17. The books have been scanned into a collection of XML documents. Each book has one 
XML document one per page plus one XML document for metadata about the book as a whole. The 
XML documents for each book are held within a compressed, ZIP, file. These ZIP files occupy 
~224GB. 

The ZIP files are collected into directories, corresponding to time periods, as shown Figure 1. 

1510_1699/ 

1700_1799/ 

1800_1809/ 

1810_1819/ 

1820_1829/ 

1830_1839/ 

1840_1849/ 

1850_1859/ 

1860_1869/ 

1870_1879/ 

                                                           
8 https://www.ed.ac.uk/information-services/research-support/research-data-service/working-with-
data/data-storage  
9 https://www.ed.ac.uk/information-services/library-museum-gallery/finding-resources/library-
databases/databases-subject-a-z/database-newspapers  
10 The data is in 5 parts e.g. Part I: 1800-1900, https://www.gale.com/uk/c/british-library-newspapers-part-i. 
For links to all 5 parts, see https://www.gale.com/uk/s?query=british+library+newspapers.  
11 https://www.gale.com  
12 https://www.cengage.com/  
13 DataStore location: \\sg.datastore.ed.ac.uk\sg\lib\groups\lac-store\blpaper  
14 https://www.bl.uk/collection-guides/datasets-for-content-mining  
15 https://figshare.com/articles/BL_Labs_Flickr_Data/1269249  
16 DataStore location: \\chss.datastore.ed.ac.uk\chss\chss\groups\Digital-Cultural-Heritage  
17 The web pages and documentation for the data state the data is from the 17th to 19th centuries. However, 
one of the data directories spans the period 1510-1699. 



1880_1889/ 

1890_1899/ 

Figure 1: British Library Books data directories in BritishLibraryBooks/ directory 

Each directory has ZIP files with the XML documents for each book from that period, as shown in 
Figure 2. Note that the ZIP file name includes the number of pages in the book. 

000000874_0_1-22pgs__570785_dat.zip 

000001143_0_1-20pgs__560409_dat.zip 

000051983_0_1-92pgs__568584_dat.zip 

000059805_0_1-56pgs__579101_dat.zip 

000075704_0_1-44pgs__1083069_dat.zip 

000106622_0_1-84pgs__569290_dat.zip 

000109780_0_1-64pgs__574740_dat.zip 

000111406_0_1-66pgs__574745_dat.zip 

000159302_0_1-96pgs__574909_dat.zip 

000188917_0_1-76pgs__578004_dat.zip 

... 

004115210_0_1-76pgs__581006_dat.zip 

Figure 2: A subset of the 693 ZIP files for books in the period from 1510 to 1699 

Each ZIP file for a book contains both its XML metadata file and, in an “ALTO/” subdirectory, its XML 
files, one per page. See, for example, Figure 3. 

004115210_metadata.xml 

ALTO/: 

004115210_000001.xml 

004115210_000002.xml 

004115210_000003.xml 

004115210_000004.xml 

004115210_000005.xml 

004115210_000006.xml 

004115210_000007.xml 

. . . 

004115210_000075.xml 

004115210_000076.xml 

Figure 3: XML metadata file and XML files, one per page, from  004115210_0_1-
76pgs__581006_dat.zip 

The metadata file contains metadata about the book as a whole, such as title, year, editor, issue date 
etc. This is represented in as a Metadata Encoding and Transmission Standard (METS)18 XML 
document. See, for example, Figure 4. 

                                                           
18 http://www.loc.gov/standards/mets/  



<?xml version='1.0' encoding='UTF-8'?> 

<mets xmlns="http:/www.loc.gov/METS/" xmlns:MODS="http:/ww 

w.loc.gov/mods/v3"><dmdSec ID="MODSMD"> 

    <mdWrap LABEL="Bibliographic meta-data of the printed version" MDTYPE="MODS" 

MIMETYPE="text/xml"> 

      <xmlData> 

        <MODS:mods version="3.1"> 

          <MODS:titleInfo> 

            <MODS:title>[A Joviall Crew: or, the Merry Beggar. Presented in a 

comedie, etc.]</MODS:title> 

          </MODS:titleInfo> 

          <MODS:name type="personal"> 

            <MODS:namePart>BROME, Richard.</MODS:namePart> 

            <MODS:role> 

              <MODS:roleTerm authority="marcrelator" 

type="text">creator</MODS:roleTerm> 

            </MODS:role> 

          </MODS:name> 

          <MODS:typeOfResource>text</MODS:typeOfResource> 

          <MODS:originInfo> 

            <MODS:place> 

              <MODS:placeTerm type="text">London</MODS:placeTerm> 

            </MODS:place> 

            <MODS:publisher>For Joseph Hindmarsh</MODS:publisher> 

            <MODS:dateIssued>1684</MODS:dateIssued> 

            <MODS:edition>[Another edition.]</MODS:edition> 

            <MODS:issuance>monographic</MODS:issuance> 

          </MODS:originInfo> 

          <MODS:physicalDescription> 

            <MODS:extent>59 p. ; 4º.</MODS:extent> 

          </MODS:physicalDescription> 

          <MODS:relatedItem> 

            <MODS:titleInfo> 

              <MODS:title>A Joviall Crew: or, the Merry Beggar. Presented in a 

comedie, etc</MODS:title> 

            </MODS:titleInfo> 

            <MODS:originInfo> 

              <MODS:publisher>J. Y., for E. D. &amp; N. E.:London, 1652. 

4º.</MODS:publisher> 

            </MODS:originInfo> 

            <MODS:identifier type="local">(Uk)MP1.0004404808</MODS:identifier> 

          </MODS:relatedItem> 

          <MODS:location> 

            <MODS:physicalLocation>British Library HMNTS 

644.g.23.</MODS:physicalLocation> 



          </MODS:location> 

          <MODS:recordInfo> 

            <MODS:recordContentSource authority="marcorg">UK 

</MODS:recordContentSource> 

            <MODS:recordCreationDate encoding="w3cdtf">1997-06-

10</MODS:recordCreationDate> 

            <MODS:recordChangeDate encoding="w3cdtf">1997-06-

10</MODS:recordChangeDate> 

            <MODS:recordIdentifier>004115210</MODS:recordIdentifier> 

          </MODS:recordInfo> 

          <MODS:accessCondition type="Copyright Status">Outof 

Copyright</MODS:accessCondition> 

        </MODS:mods> 

      </xmlData> 

    </mdWrap> 

  </dmdSec> 

  </mets> 

Figure 4: “004115210_metadata.xml” metadata file 

In Figure 4, we have highlighted the year (“dateIssued”) from this book. In theory, all the books 
stored under a directory period (e.g. “1510_1699/"), should have an issue date that belongs to that 
period. As we describe later (see section 7.1.1) this is not guaranteed to be the case.  

The XML documents for each page are conformant with the ALTO (Analysed Layout and Text 
Object)19 format, an XML Schema that details technical metadata for describing the layout and 
content of physical text resources, such as pages of a book or a newspaper. 

4. Text analysis codes 
The three text analysis codes used were as follows. The codes were initially developed by UCL with 
the British Library as part of Jisc Research Data Spring 201520 21 and were suggested by Melissa and 
Raquel. 

i_newspaper_rods22 is a Python code that uses the Apache Spark cluster computing framework to 
run queries over newspaper data from the Times Digital Archive (TDA)23, which, like the British 
Library Newspapers data is provided by Gale. It is designed to extract TDA data held within a UCL 

                                                           
19 https://www.loc.gov/standards/alto/  
20 Partners in time: HPC opens new horizons for Humanities research, Research IT Services, University College 
London, 24 October 2017, http://www.ucl.ac.uk/research-it-services/case-studies-pub/2017-10-digital-
humanities-HPC  
21 Melissa Terras, James Baker, James Hetherington, David Beavan, Martin Zaltz Austwick, Anne Welsh, Helen 
O'Neill Will Finley, Oliver Duke-Williams, Adam Farquhar (2017) Enabling complex analysis of large-scale digital 
collections: humanities research, high-performance computing, and transforming access to British Library 
digital collections, Digital Scholarship in the Humanities, fqx020, 02 May 2017. 
https://doi.org/10.1093/llc/fqx020.  
22 https://github.com/UCL/i_newspaper_rods  
23 https://www.gale.com/uk/c/the-times-digital-archive  



deployment of the data management software, iRODS24, and run queries on a user’s local machine 
or on UCL’s high performance computing services, Legion and Grace25. A range of queries are 
supported e.g. count the number of articles per year, count the frequencies of a given list of words, 
find expressions matching a pattern. i_newspaper_rods was last updated 1 month ago. 

cluster-code (master branch)26 (hereon called cluster-code-master) is a Python code this uses the 
mpi4py27 Python wrapper for the Message Passing Interface (MPI) parallel computing protocol to 
query the British Library Books data. Like i_newspaper_rods it is designed for use with UCL’s data 
management and high performance computing services. A range of queries are supported e.g. count 
the total number of pages across all books, count the frequencies of a given list of words, find the 
locations of figures etc. cluster-code-master was last updated in 2015. 

cluster-code (sparkrods branch) 28 (hereon called cluster-code-sparkrods) is a branch of the above. It 
has been updated use Apache Spark instead of MPI. Currently only one query, to count total number 
of words across all books, has been updated to run under Apache Spark. cluster-code-sparkrods was 
last updated in 2016. 

An additional code, visualisations29 (hereon called visualisations) was also used. This includes 
Jupyter notebooks to visualise and further analyse the outputs from cluster-code-master. It also 
includes sample query results. Visualisations was last updated in 2015. 

5. Accessing the data from within Urika 
The University suggests 4 approaches to transferring3031 data hosted within the DataStore to Linux-
based systems, such as Urika: 

 An NFS mount, requiring administrator access, and registration of the accessing machine 
with the Edinburgh Compute Data Facility (ECDF), which hosts the DataStore. 

 A CIFS mount, requiring administrator access. 
 An SSHFS mount.  
 An SFTP file transfer, copying the data across from the DataStore. 

Urika supports the following data transfer approaches32: 

 An SFTP file transfer.  
 An SCP file transfer. 

We felt that SSHFS33 mount would be preferable for the following reasons. We could mount the 
DataStore directories in our home directories in Urika without the need for administrators to do this 
for us (unlike for NFS or CIFS). Administrators would not need to register Urika with the ECDF nor set 
up access control to prevent unauthorised access to the data from within Urika, once mounted 

                                                           
24 https://irods.org/  
25 http://www.ucl.ac.uk/research-it-services/research-computing  
26 https://github.com/UCL-dataspring/cluster-code/tree/master  
27 http://mpi4py.scipy.org/docs/  
28 https://github.com/UCL-dataspring/cluster-code/tree/sparkrods  
29 https://github.com/UCL-dataspring/visualisations  
30 https://www.wiki.ed.ac.uk/display/ResearchServices/DataStore+-+Linux+Access  
31 https://www.wiki.ed.ac.uk/display/ResearchServices/DataStore+-+SFTP+Access  
32 https://ati-rescomp-service-docs.readthedocs.io/en/latest/cray/data-transfer.html  
33 https://en.wikipedia.org/wiki/SSHFS  



(unlike for NFS). We would not need to transfer all the data in one go but selectively if required, via 
the standard Unix file move (“mv”) or copy (“cp”) commands (unlike SFTP or SCP). 

SSHFS was not available on Urika. We requested that it be installed and, after a discussion and an 
evaluation of SSHFS by the administrators, it was installed. 

5.1. Copying data to Urika’s Lustre file system 

Before analysing the data, it must be copied from a home directory into Urika’s Lustre file system 
(“/mnt/lustre/”). This is because, unlike Urika’s login nodes, Urika’s compute nodes have no network 
access and so cannot access the DataStore via the mount point. Equally importantly, for efficient 
processing, data movement and network transfers need to be minimised. 

Consequently, depending on the nature and scale of data to be analysed there are two options open 
to users: 

1. Copy the entire data set into Lustre, then run the analysis. 
2. Decide how the data can be split into subsets (e.g. the British Library Books data can be split 

into one subset per time period), then, for each subset, copy the subset to Lustre, run the 
analysis on the subset, then remove the subset. When all subsets have been analysed, 
combine the results of each subset. 

6. Using i_newspaper_rods with British Library Newspapers data 
Our updated code, plus documentation on how to run it, both on a standalone machine and on Urika 
is available in our fork of i_newspaper_rods in an epcc-master branch34. 

6.1. Processing TDA versus British Library Books data 

As mentioned in section 4, i_newspaper_rods was written to query the TDA. While the British Library 
Newspapers data conforms to a British Library Books-specific XML schema, the TDA XML files 
conform to a so-called GALEN XML Schema which specifies a document that embeds an XML sub-
document with elements from the British Library Books-specific XML schema. The code within 
i_newspaper_rods had been written in such a way that when it queries a newspaper’s XML within a 
document, the differences in the XML Schemas has no impact. Consequently, the i_newspaper_rods 
can handle both British Library Books and TDA data as-is. This may arise from the fact that the data 
in both cases originates from Gale. 

6.2. Key changes required to i_newspaper_rods 

I_newspaper_rods has two types of code: 

 “Spark code”: Code that can be run by Apache Spark to execute queries across XML 
documents. 

 “fabric code”: Code written using Python fabric35 library that allows the above code plus 
code implementing a specific query and a file listing the locations of XML files across which 
the query is to be run (a so-called OIDS file) to be submitted to specific UCL systems. This 

                                                           
34 https://github.com/alan-turing-institute/i_newspaper_rods/tree/epcc-master. The branch was branched 
from master, commit 4810474395c2f854b5a679d28e5b6ab320509e7b dated Nov 30 10:02:58 2017.  
35 http://www.fabfile.org  



code queries UCL’s iRODS service for the locations of the XML newspaper files and 
constructs the OIDS file. 

We wrote additional fabric code to allow for the Apache Spark code to be run “standalone”, that is, 
without any dependence on iRODS. This code assumes that an OIDS file is created out-of-band36. 

The Spark code assumed that the OIDS file contains relative paths to the XML documents. It prefixes 
these with a UCL-specific URL to turn the relative paths into UCL-specific URLs where the documents 
could be found. This code was changed so that the Spark code could handle an OIDS file with either 
URLs or absolute file paths, the latter being required so that XML documents within the Lustre file 
system can be accessed. 

One result of this change is that the epcc-master branch will no longer work with UCL’s systems. This 
could be fixed by updating the fabric code for UCL’s systems to add the UCL-specific URL prefix when 
constructing an OIDS file. We did not make this change ourselves as we had no way of testing it. 

Our changes were tested under Mac OS, a CentOS 7.2 virtual machine and on Urika using both OIDS 
files with URLs and absolute file paths. 

6.3. Running queries on British Library Newspapers data 

We ran the “articles_containing_words” query with a list of “interesting gender words”37 e.g. “she”, 
he”, “him”, “her”, “lady”, “lord” etc., which returns the frequency of each word. 

We ran the modified code on a single XML document, “blpaper/xmls/0000164- The Courier and 
Argus/0000164_19010101.xml”. An excerpt of the result is shown in Figure 5. 

1901: 

- [mary, 6] 

- [his, 44] 

- [gerald, 1] 

- [himself, 9] 

- [boy, 4] 

- [brother, 4] 

- [queen, 11] 

- [duke, 6] 

Figure 5: Result of a query for gender-specific words 

The same result was obtained under Mac OS, a CentOS 7.2 virtual machine and on Urika. 

                                                           
36 A quick-and-dirty way of doing this is to use the Unix “find” command on the directory containing the 
newspaper XML files to get a list of the paths to them. This is documented in the epcc-master branch’s 
README.md file. 
37 https://github.com/alan-turing-institute/i_newspaper_rods/blob/epcc-
master/query_args/interesting_gender_words.txt  



7. Using cluster-code-master with British Library Books data 
Our updated code, plus documentation on how to run it, both on a standalone machine and on Urika 
is available in our fork of cluster-code in an epcc-master branch38. 

7.1. Key changes required to cluster-code-master 

cluster-code-master has two types of code: 

 “MPI code”: Code that uses MPI to execute queries across the contents of ZIP files. 
 “fabric code”: Code written using Python fabric library that allows the above code plus query 

code and code to determine the location of directories containing the ZIP files to be 
submitted to specific UCL systems.  

We wrote fabric code to allow for cluster-code-master to determine the location of data directories 
in Urika’s Lustre file system and to submit the MPI code for execution via its Apache Mesos cluster 
manager and using mpirun39 to execute the MPI code across the provided resources. mrun requests 
1 node and mpirun requests up to 16 CPUs on that node. 

A script was written to copy the British Library Books data from a mount in a user’s home directory 
to the Lustre file system. This file excludes all “._*.zip” files found within the directories for each 
time period (every ZIP file has a corresponding “._” file). It is unclear where these “_*.zip” files 
originate but it appears they could have been created by Mac OS (perhaps as part of the process of 
deploying the British Library Books data onto the DataStore). 

The “mean_pages” query is misnamed as it actually calculates the total number of pages. It was 
renamed to “total_pages” to accurately reflect what the query does. 

A “total_words” query was also written. 

7.1.1. Results post-processing 

Melissa suggested we look at both the “diseases” and the “normaliser” queries. “diseases” searches 
for occurrences of the names of 13 diseases (e.g. “cholera”, “tuberculosis” etc.) and returns the total 
number of occurrences of each name. “normaliser” builds a derived dataset (counts of books, pages 
and words per year) which allows us to see how these parameters change over time. Combining the 
results from both queries, we can examine the extent to which occurrences of the 13 diseases terms 
are affected by the way that the number of books published increases over the measurement 
period, normalising the results and preserving statistical validity.  

When a query has completed, a number of data files are output for each period, where each data 
file corresponds to a single parallel process. See, for example, Figure 6: 

out_1510_1699_11.yml 

out_1510_1699_14.yml 

out_1510_1699_6.yml 

out_1510_1699_9.yml 

. . . 

                                                           
38 https://github.com/alan-turing-institute/cluster-code/tree/epcc-master. The branch was branched from 
master, commit 8e0d9f24f150537c1712de4cbe768bf53b7d6986 dated Thu Jul 2 08:27:53 2015.  
39 https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager  



out_1890_1899_0.yml 

out_1890_1899_11.yml 

out_1890_1899_14.yml 

out_1890_1899_4.yml 

out_1890_1899_6.yml 

out_1890_1899_8.yml 

out_1890_1899_9.yml 

Figure 6: Sample output files after running “diseases” query 

There was no code in cluster-code-master to combine these results. A “join_diseases” script was 
written to combine these partial results, by concatenating the data file for each process output by 
the “diseases” query. A “result_diseases” script was then written to post-process these joined data 
files and output one file per disease (each with keys corresponding to each year in which the disease 
is mentioned, and a value corresponding to the number of mentions of the disease, or, the number 
of occurrences of that disease’s name). 

Similarly, a “join_normaliser” script was written to combine the outputs of the “normaliser” query 
and a “result_normaliser” script was written to post-process the joined data files and output a single 
file, with the normaliser results for each year. 

Generic “join_values” and “join_lists” scripts were also written to combine the output data from the 
“total_books”, and “total_pages” and “total_words” queries. 

Some books that belong to a specific period (e.g. 1510 to 1699) have been reprinted later. For 
example, the book represented by “1510_1699/001376528_0_1-68pgs__567079_dat.zip” was 
reprinted in 1844 and its metadata file, “001376528_metadata.xml”, shows two issues dates (see 
Figure 7). 

<MODS:dateIssued>1570 [reprinted 1844.]</MODS:dateIssued> 

Figure 7: An issue date with a reprint date 

The MPI code correctly picks up the date in brackets (in this case 1844). However, when running our 
“join_normaliser” script this can yield an output file with repeated keys, as shown in Figure 8: . 

1844: [396, 169900, 65610826] 

1844: [1, 68, 9394] 

Figure 8: Duplicated keys in output files 

The “result_normaliser” script handles any duplicated keys like this. See, for example, Figure 9. 

1844: [397, 169968, 65620220] 

Figure 9: Combining duplicated keys 

Similar comments apply to “join_diseases” and “result_diseases”. It would admittedly be better if 
the “join” scripts were rewritten so that they did not produce output files with duplicated keys. 



7.2. Running queries on British Library Books data 

The “total_books”, “total_pages” and “total_words” queries were run on all the books in the 
“1510_1699/” directory. The results were: 

 “total_books”: 693. This was validated by comparing the result to the number of ZIPs in the 
1510_1699/ directory, also 693. 

 “total_pages” ([books, pages]): [693, 62768]. 
 “total_words” ([books, words]): [693, 17479341] 

The queries were also run across all books. The results were: 

 “total_books”: 63701. This differs from the total number of ZIPs, which is 63700. It is unclear 
why this arises. 

 “total_pages”: [63701, 22044324] 
 “total_words”: [63701, 6866559285] 

We also ran both the “diseases” and the “normaliser” queries across all the books. Comparing our 
results to those for 4 diseases (“cholera”, “consumption”, “measles”, “whooping”) and “normaliser” 
revealed differences from UCL’s results (as held in visualisations, see section 7.3. Note that 
visualisations does not have results for the other 9 diseases). The differences are shown in Figure 10 
to Figure 14 where each figure shows both values present in one results file but not the other and 
differences in values with the same key (in each figure, UCL’s value then our value is shown). 

1899: 531 (visualisations/diseases/data-ucl/cholera.yml) 

1900: 2 (visualisations/diseases/data-ucl/cholera.yml) 

None: 128 (visualisations/diseases/data-ucl/cholera.yml) 

1881: 1216 =/= 1228 

1882: 770 =/= 771 

1888: 490 =/= 487 

Figure 10: “cholera.yml” 

1899: 748 (visualisations/diseases/data-ucl/consumption.yml) 

1900: 7 (visualisations/diseases/data-ucl/consumption.yml) 

1917: 5 (visualisations/diseases/data-ucl/consumption.yml) 

1926: 1 (visualisations/diseases/data-ucl/consumption.yml) 

None: 242 =/= 1 

1847: 1299 =/= 1320 

1876: 659 =/= 660 

1879: 888 =/= 889 

1881: 1141 =/= 1150 

1882: 973 =/= 978 

Figure 11: “consumption.yml” 

1920: 1 (visualisations/diseases/data-ucl/measles.yml) 

1899: 89 (visualisations/diseases/data-ucl/measles.yml) 

1900: 2 (visualisations/diseases/data-ucl/measles.yml) 



1917: 1 (visualisations/diseases/data-ucl/measles.yml) 

1925: 2 (visualisations/diseases/data-ucl/measles.yml) 

None: 95 (visualisations/diseases/data-ucl/measles.yml) 

1879: 116 =/= 120 

1898: 123 =/= 122 

Figure 12: “measles.yml” 

1920: 1 (visualisations/diseases/data-ucl/whooping.yml) 

1899: 31 (visualisations/diseases/data-ucl/whooping.yml) 

None: 47 (visualisations/diseases/data-ucl/whooping.yml) 

1882: 69 =/= 72 

Figure 13: “whooping.yml” 

1899: [990, 310503, 91999157] (visualisations/diseases/data-ucl/normaliser.yml) 

1900: [91, 13698, 2139607] (visualisations/diseases/data-ucl/normaliser.yml)  

1905: [3, 356, 36763] (visualisations/diseases/data-ucl/normaliser.yml)  

1906: [1, 220, 29104] (visualisations/diseases/data-ucl/normaliser.yml)  

1907: [2, 128, 9345] (visualisations/diseases/data-ucl/normaliser.yml)  

1908: [1, 296, 44354] (visualisations/diseases/data-ucl/normaliser.yml) 

1910: [2, 440, 96451] (visualisations/diseases/data-ucl/normaliser.yml)  

1911: [1, 170, 13862] (visualisations/diseases/data-ucl/normaliser.yml) 

1912: [2, 124, 13553] (visualisations/diseases/data-ucl/normaliser.yml) 

1913: [1, 112, 1150] (visualisations/diseases/data-ucl/normaliser.yml) 

1914: [2, 160, 26777] (visualisations/diseases/data-ucl/normaliser.yml) 

1915: [1, 92, 14912] (visualisations/diseases/data-ucl/normaliser.yml) 

1916: [5, 444, 50850] (visualisations/diseases/data-ucl/normaliser.yml) 

1917: [19, 2170, 275574] (visualisations/diseases/data-ucl/normaliser.yml) 

1918: [20, 2138, 246707] (visualisations/diseases/data-ucl/normaliser.yml) 

1919: [14, 1338, 163377] (visualisations/diseases/data-ucl/normaliser.yml) 

1920: [18, 2422, 445459] (visualisations/diseases/data-ucl/normaliser.yml) 

1921: [10, 914, 168782] (visualisations/diseases/data-ucl/normaliser.yml) 

1922: [11, 1336, 165256] (visualisations/diseases/data-ucl/normaliser.yml) 

1923: [3, 230, 21807] (visualisations/diseases/data-ucl/normaliser.yml) 

1924: [5, 540, 75406] (visualisations/diseases/data-ucl/normaliser.yml) 

1925: [8, 864, 109296] (visualisations/diseases/data-ucl/normaliser.yml) 

1926: [14, 926, 104134] (visualisations/diseases/data-ucl/normaliser.yml) 

1927: [7, 634, 75715] (visualisations/diseases/data-ucl/normaliser.yml) 

1928: [1, 74, 2846] (visualisations/diseases/data-ucl/normaliser.yml) 

1938: [1, 96, 7869] (visualisations/diseases/data-ucl/normaliser.yml) 

1946: [5, 306, 39688] (visualisations/diseases/data-ucl/normaliser.yml) 

1847: [468, 188806, 66595090] =/= [469, 189214, 66737593] 

1859: [689, 283974, 102082700] =/= [688, 283374, 101889924] 

1876: [1031, 391376, 114051280] =/= [1032, 391470, 114112523] 

1878: [1005, 378031, 115847818] =/= [1006, 378237, 115885429] 



1879: [1039, 365924, 110948144] =/= [1040, 366420, 111123918] 

1881: [883, 338936, 118970987] =/= [887, 341590, 120946929] 

1882: [770, 301002, 116444056] =/= [771, 302038, 117297592] 

1885: [1252, 432249, 146452834] =/= [1254, 432249, 146452834] 

1888: [1280, 414576, 115987635] =/= [1280, 413394, 115296855] 

1896: [1574, 507235, 138983689] =/= [1573, 506589, 138755318] 

1898: [1278, 423650, 124061119] =/= [1268, 420066, 123156558] 

Figure 14: “normaliser.yml” 

The cause of this divergence is unknown but it should be noted that UCL’s results have additional 
key-values, including for years for which we don’t seem to have books (e.g. 1900 onwards). 

7.3. Visualising “diseases” and “normaliser” results using visualisations 

For visualising the results, we used the visualisations code. Our updated code, plus documentation 
on how to run it on Urika is available in our fork of visualisations, cluster-code-visualisations, in an 
epcc-master branch40. 

The following changes were made: 

 Existing “diseases” and “normaliser” data from UCL was moved into a new directory, each 
file was renamed and the “diseases” data was reedited so that each file had the results for 
exactly one disease41. 

 Data from our own runs was added42. 
 An existing “Diseases_1.ipynb” Jupyter notebook was copied into a new file “Diseases_1-

LocalPackages.ipynb” and the following updates applied: 
o Commands were added to install any required Python libraries, if these are not 

already available. 
o The notebook was updated to conform to the latest Jupyter notebook format (this 

was automatically done when we first opened the notebook on Urika’s Jupyter 
notebook server). 

o The notebook was modified so that it would graph all the “diseases” results and all 
the “diseases” results after the application of the “normaliser” data. 

The Jupyter notebook was successfully used to view our data within Urika’s Jupyter notebook server. 
The notebook uses the Bokeh43 library to visualise interactive figures. These are not rendered within 
the Jupyter notebook when run in Urika. However, the HTML visualisations are created and these 
can be copied these to another computer and opened within a web browser. 

                                                           
40 https://github.com/alan-turing-institute/cluster-code-visualisations/tree/epcc-master. The branch was 
branched from master, commit 3ec3c54c5fa8f5175bd3b0fb0e065df627653e70 dated Thu Jul 2 12:35:41 2015.  
41 https://github.com/alan-turing-institute/cluster-code-visualisations/tree/epcc-master/diseases/data-ucl   
42 https://github.com/alan-turing-institute/cluster-code-visualisations/tree/epcc-master/diseases/data  
43 https://bokeh.pydata.org/en/latest/  



8. Using cluster-code-sparkrods with British Library Books data 
Our updated code, plus documentation on how to run it, both on a standalone machine and on Urika 
is available in our fork of cluster-code in an epcc-sparkrods branch44. 

8.1. Key changes required to cluster-code-sparkrods 

The changes made to i_newspaper_rods (as described in section 6.2) were applied to cluster-code-
sparkrods too. 

The “mean_pages” query is misnamed as it actually calculates the total number of words. It was 
renamed to “total_words” to accurately reflect what the query does. 

The “total_books” query was updated to be compliant with Apache Spark. 

The use of down-sampling in the Spark code45 was commented out as it always seemed to result in 
zero objects and, consequently, empty query results. It is unclear why this is the case. 

Our changes were tested under Mac OS, a CentOS 7.2 virtual machine and on Urika using both OIDS 
files with URLs and absolute file paths. 

The script to copy the British Library Books data from a mount in a user’s home directory to the 
Lustre file system, written for cluster-code-master (see section 7.1), was added here too. 

8.2. Running queries on British Library Books data 

The “total_words” query was run on two ZIP files: 

 “dch/BritishLibraryBooks/1510_1699/000000874_0_1-22pgs__570785_dat.zip” 
 “dch/BritishLibraryBooks/1510_1699/000001143_0_1-20pgs__560409_dat.zip” 

The result was ([books, words]) [2, 4372]. The same result was obtained under Mac OS, a CentOS 7.2 
virtual machine and on Urika. The result was validated by uncompressing the ZIP files and, via the 
Unix “grep”, search command, searching for all occurrences of the text “<String”, the XML element 
for a word in all the XML documents for each book’s page. 

The “total_books” and “total_words” queries were run on all the books in the “1510_1699/” 
directory. The results were: 

 “total_books”: 693. This was validated by comparing the result to the number of ZIPs in the 
1510_1699/ directory, also 693. 

 “total_words” ([books, words]): [693, 17479341] 

The results were also validated by comparing them to the results for cluster-code-master (see 
section 7.2). 

                                                           
44 https://github.com/alan-turing-institute/cluster-code/tree/epcc-sparkrods. The branch was branched from 
sparkrods, commit 08d8bfd0a6cf37f7e4408a9475b38d6747c0cfeb dated Nov 10 20:48:57 2016.  
45 https://github.com/alan-turing-institute/cluster-code/blob/epcc-sparkrods/bluclobber/sparkrods.py  



9. Options for future work 
Options for future work are as follows. No further work is proposed for cluster-code-master since 
that code is deprecated. However, it is important to discuss the divergence between our results and 
UCL’s results with Melissa. 

9.1. i_newspaper_rods and British Library Newspapers data 

Our changes to i_newspaper_rods were made to a version last updated on November 30 2017. UCL 
have since made a significant number of changes to the code, including reducing its complexity, 
removing iRODS use, and updating it to be Python 3-compliant. We could merge these most recent 
changes with our branch, and then contribute our changes back (especially the support for both file 
paths and URLs in OIDS files and removing any UCL systems-specific code from the Spark code). 

It would be useful to implement a way of constructing OIDS files that is more usable than using the 
Unix “find” command e.g. by providing a Python script to do this, as is now done in the most recent 
version of i_newspaper_rods, but in a script that contains no references to UCL-specific file systems. 

We could run queries across the entire British Library Newspapers data to assess the scalability and 
performance of the code. 

9.2. cluster-code-sparkrods and British Library Books data 

The future work proposed for i_newspaper_rods is also applicable here too. 

An additional task would be to migrate all the remaining queries in cluster-code-sparkrods to be 
Apache Spark-compliant. 

9.3. General 

Additional sample queries, and expected results, from Melissa for both the British Library Books data 
and British Library Newspaper data would be useful for performing further validation of the code 
when running on Urika. 

Following from the above, new queries from Melissa, for which she has no results at present, would 
be productive to explore, contributing new insights back to Melissa. 

Melissa commented that 5-6 queries that will satisfy 70% of humanities requirements (e.g. find 
every instance of a word and return their pages; find occurrences of one word but not the other; 
find occurrences of two words together, in close proximity). It would be useful to enumerate these 
and implement them within Apache Spark. 

The Apache Spark code in i_newspaper_rods and cluster-code-sparkrods were written for an older 
version of Apache Spark (1.5.1) and use the pyspark46 and streaming 47 libraries.  The current version 
of Apache Spark (2.3.1) supports Scala, Java, and Python programming languages. Spark’s support 
for Python is more limited than for these other languages in that a reduced set of functionalities is 
accessible via Python. For the purposes of text mining, all the required functionality is accessible, but 
one could consider migrating queries and the supporting framework from Python to Scala in future 
e.g. to gain performance benefits. 

                                                           
46 http://spark.apache.org/docs/2.2.0/api/python/pyspark.html  
47 https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html  
 



 

As mentioned in section 9.1, UCL are continuing to refactor i_newspaper_rods. This is being done 
with the intention of combining this code with cluster-code-sparkrods, so that queries across the 
data can be done using a common Apache Spark with a common underlying data model. We could 
contribute to this work. 

 


