
Analysing Historical Newspapers and
Books Using Apache Spark and Cray

Urika-GX

Mike Jackson, Rosa Filgueira, Anna Roubickova

Alan Turing Institute / EPCC, The University of Edinburgh

16 August 2019

1. Introduction
In this report, explorations of historical newspapers and books using Apache Spark1 and the Alan
Turing Institute2’s Cray Urika-GX system are described. These explorations were done in
collaboration with Melissa Terras, College of Arts, Humanities and Social Sciences (CAHSS)3, The
University of Edinburgh. These explorations continue earlier work described in a report on
“Analysing Humanities Data using Cray Urika-GX”4 and its complementary blog post5. This work was
funded by Scottish Enterprise as part of the Alan Turing Institute-Scottish Enterprise Data
Engineering Program.

1.1. Cray Urika-GX

The Cray Urika-GX system 6 7 8 is a high-performance analytics cluster with a pre-integrated stack of
popular analytics packages, including Apache Spark, Apache Hadoop and Jupyter notebooks9, all
managed using the Apache Mesos resource manager. These are complemented with myriad tools
and frameworks to allow data analytics applications to be developed in Python, Scala, R and Java.

The Alan Turing Institute’s deployment of the Cray Urika-GX system (hereon called Urika) includes 12
compute nodes (each with 2x18 core Intel® Xeon® “Broadwell” CPUs), 256GB of memory and 60TB
of storage (within a Lustre high-performance parallel file system) and 2 login nodes. Both compute
and login nodes run the CentOS 7.4 operating system.

1 https://spark.apache.org
2 https://www.turing.ac.uk/
3 https://www.ed.ac.uk/arts-humanities-soc-sci
4 Rosa Filgueira and Mike Jackson (2018) “Analysing Humanities Data using Cray Urika-GX”, Alan Turing
Institute / EPCC, The University of Edinburgh, 31st July 2018, https://ati-rescomp-service-
docs.readthedocs.io/en/latest/_downloads/ATI-SE-Humanities-Report.pdf
5 Rosa Filgueira and Mike Jackson (2018) “Analysing humanities data using Cray Urika-GX”, EPCC blog, 11
October 2018. https://www.epcc.ed.ac.uk/blog/2018/10/11/analysing-humanities-data-using-cray-urika-gx
6 https://www.cray.com/products/analytics/urika-gx
7 https://ati-rescomp-service-docs.readthedocs.io/en/latest/cray/introduction.html
8 https://www.epcc.ed.ac.uk/facilities/other-facilities/cray-urika-gx
9 http://jupyter.org

2. Datasets
The historical books and newspapers analysed range from the 16th to the early 20th centuries. The
books and newspapers had been scanned via optical character recognition (OCR) into XML
documents. The books and newspapers datasets that were explored were as follows.

Dataset Period Structure XML
Schema/Document
Types

Scale Space Availability

British Library
Books10 (BLB)

1510-
1899

One ZIP file
per book
with one
XML
metadata
document
per book
and one
XML
document
per page

XML metadata
document: Metadata
Encoding and
Transmission Standard
(METS)11
XML page document:
ALTO (Analysed Layout
and Text Object)12

63700 ZIP
files

~220GB Available, under
licence, from
Gale13, a division of
CENGAGE14.

Also available
under an open,
public domain,
licence.

British Library
Newspapers15
(BLN)

1714-
1950

One XML
document
per issue

Unclear16 179669
XML
documents

~424GB Available, under
licence, from Gale,
a division of
CENGAGE.

Times Digital
Archive17
(TDA)

1785-
2009

One XML
document
per issue

Unclear, but with
significant overlap to
the above

69699 XML
documents

~362GB Available, under
licence, from Gale,
a division of
CENGAGE.

Papers Past
New Zealand
and Pacific
newspapers18
(NZPP)

1839-
1863

One XML
document
for a set of
22 articles

Unspecified. Each XML
document corresponds
to results from a search
via an API.

13411 XML
documents

~4GB Available, under
licence, from
Papers Past19.
Data can be
accessed via API
calls which return
search results in
the form of XML
documents.

The copies of the datasets used are hosted at the University of Edinburgh within the University’s
DataStore20 provided by Information Services’ Research Data Services. The authors were unaware of
the processes by which the data was transferred from data providers to the University’s DataStore,
but the authors did discover that some of the datasets were incomplete. Parts 4 to 6 of the BLN

10 https://data.bl.uk/digbks/
11 http://www.loc.gov/standards/mets/
12 https://www.loc.gov/standards/alto/
13 https://www.gale.com
14 https://www.cengage.com/
15 https://www.gale.com/uk/s?query=british+library+newspapers
16 These conform to an XML Schema for which no XSD or DTD files seem available. However, it is very similar to
that documented in “Appendix E. Description of the DTD fields” of Jisc’s “British Newspapers 1620 – 1900 Final
Report”, 19 August 2009,
https://webarchive.nationalarchives.gov.uk/20140702175911/http://www.jisc.ac.uk/media/documents/progr
ammes/digitisation/blfinal.pdf
17 https://www.gale.com/intl/c/the-times-digital-archive
18 http://paperspast.natlib.govt.nz/newspapers
19 http://paperspast.natlib.govt.nz/
20 https://www.ed.ac.uk/information-services/research-support/research-data-service/working-with-
data/data-storage

were missing and there were only TDA files spanning 1785-1848. Melissa arranged for access to the
full data sets which were delivered via hard drive, then copied, using rsync21, into the DataStore.

The DataStore directories were mounted onto Urika using SSHFS22 and were then copied into Urika’s
Lustre high-performance file system, via rsync which was also used to filter out any content that was
not needed e.g. backup files, scratch files or raw image files which were present in the data
directories. A local copy is necessary because, unlike Urika’s login nodes, Urika’s compute nodes
have no network access and so cannot access the DataStore via SSHFS network mount points.
Equally importantly, for efficient processing, data movement and network transfers need to be
minimised.

As the authors are unaware of the processes by which the other data was accessed and then
deposited into the DataStore, some of the datasets used during this work may still be incomplete.
The above table reflects that actual numbers of files used within this work.

3. Historical books and newspapers analysis code
The work described in “Analysing Humanities Data using Cray Urika-GX” used two text analysis codes
and a set of complementary Jupyter notebooks for visualisation and results analysis. The codes were
initially developed by UCL with the British Library and further developed by EPCC as described in the
original report. The codes and notebooks were as follows:

 i_newspaper_rods (epcc-master branch)23: Python code that uses Apache Spark to run
queries over both BLN and TDA datasets. It provides an object model that represents
newspapers in terms of issues and articles. XPath24 queries are used to extract information
from XML documents. These queries exploit the commonality between the XML Schema
used in BLN and TDA with conditionals handling minor differences.

 cluster-code (sparkrods branch) 25: Python code that uses the Apache Spark cluster
computing framework to run queries over BLB datasets. It provides an object model that
represents books in terms of ZIP archives, books and pages. XPath queries are used to
extract information from XML documents. These queries assume that the XML documents
are compliant with METS (for books) and ALTO (for pages).

 visualisations (epcc-master branch)26: Jupyter notebooks to visualise and analyse the outputs
from cluster-code, plus sample query results.

While i_newspaper_rods and cluster-code share common code and behaviour they are implemented
and are run in slightly different ways. They also include code to support the use of various HPC
environments at UCL. It was proving challenging for the authors to continue to develop both these
codes especially given there was no way for the authors to test the HPC-specific code. Consequently,
i_newspaper_rods and cluster-code were merged and refactored into a single new code, “defoe”27.

21 https://rsync.samba.org/
22 https://en.wikipedia.org/wiki/SSHFS
23 https://github.com/alan-turing-institute/i_newspaper_rods/tree/epcc-master
24 https://www.w3.org/TR/xpath/all/
25 https://github.com/alan-turing-institute/cluster-code/tree/epcc-sparkrods
26 https://github.com/alan-turing-institute/cluster-code-visualisations/tree/epcc-master
27 https://github.com/alan-turing-institute/defoe

3.1. defoe

defoe allows for BLB, BLN and TDA datasets to be queried from a single command-line interface and
in a consistent way. HPC environment-specific code was removed – defoe assumes that the code is
executed via Apache Spark’s “spark-submit”28 command (additional HPC environment-specific
configuration and deployment code can stored in other repositories). Improvements to usability
were made so that the user specifies the data files to query, the object model to use, the query to
use and any query-specific files via the command-line. Co-locating the object models for each type of
dataset should make it easier, in future, to identify and extract out commonality across the object
models, and also to develop queries which operate across any object model transparently to users
(this is discussed further in section 5 below).

The merging and refactoring of i_newspaper_rods and cluster-code into defoe was done by the
authors as part of the Living with Machines29 project, a collaboration between the Alan Turing
Institute, the British Library and a number of universities, and funded by the Arts and Humanities
Research Council and UK Research & Innovation. Living with Machines seeks to understand the
impact of technology across society during the Industrial Revolution by studying newspapers,
journals, pamphlets, census data and other publications from that era.

3.2. NZPP object model

As part of the work with Melissa, defoe was extended with a new object model to support the NZPP
dataset. The object model represents NZPP XML documents in terms of collections of articles and
single articles within these. XPath queries are used to extract information from these XML
documents.

3.3. defoe_visualization

To complement defoe, a new repository of Jupyter notebooks, defoe_visualization30, was also
developed. These allow researchers to explore the query results and also to post-processing on the
results to extract information of use to them. The notebooks are complemented with YAML and
comma-separated values (CSV) files with the query results produced by the authors.

4. Querying historical newspapers and books
Using defoe, three types of analysis were undertaken at Melissa’s request. The analyses and results
were as follows31.

4.1. Reporting the Krakatoa eruption of 1883

Krakatoa (Krakatau in Indonesian)32 erupted over 26-27th August 1883 and was one of the most
spectacular volcanic eruptions of contemporary times. Melissa was interested in references to the
eruption within contemporary newspapers in the year 1883. An existing query was run,

28 https://spark.apache.org/docs/latest/submitting-applications.html
29 https://www.turing.ac.uk/research/research-projects/living-machines
30 https://github.com/alan-turing-institute/defoe_visualization
31 The version of defoe used was https://github.com/alan-turing-
institute/defoe/tree/59dbbd93db2a2db8bb72bd70bbd861345e0415be and the results are in
defoe_visualisation version https://github.com/alan-turing-
institute/defoe_visualization/tree/b6a3f9105fddee4259c15f41fbc55594e177d3fb
32 https://en.wikipedia.org/wiki/Krakatoa

“keyword_and_concordance_by_date” 33, which searches for occurrences of any word in a list of
keywords and returns information on each matching article including title, matching keyword, article
text and filename. Results are grouped by the publication dates of the newspapers. This query was
run with the keywords “krakatoa” and “krakatau” across BLN34 and TDA35. Within 1883 itself, 62
articles referencing "Krakatoa" or "Krakatau" were identified within BLN and 17 within TDA.

This query motivated the development of an object model for NZPP. However, it was discovered
during this work that the dataset predated 1883, spanning 1839-1863.

4.2. Origin of the term “stranger danger”

A social sciences colleague of Melissa’s was interested in how the phrase “stranger danger” has been
used over time and where and when it might have originated from.

A query was implemented, “colocates_by_year”36, which searches for two words which are co-
located and separated by a maximum number of intervening words. For each match, information
about the matching book/issue, including the book/article title, the matching words, the intervening
words, and the book/newspaper file name are returned. These results are grouped by the
publication dates of the books/newspapers.

This query was run, with the words “stranger” and “danger” and a maximum number of intervening
words of 12, across BLB37.

4.3. Exploring female emigration

Melissa was also interested in exploring female emigration. To assist with this exploration two
existing queries were modified:

 “target_and_keywords by_year” 38, which searches for occurrences of a target word
occurring with any word in a list of keywords and returns counts of the number of articles
which include the target word and a subset of the keywords. The results are grouped by
year.

 “target_and_keywords_count_by_year” 39, which searches for occurrences of a target word
(occurring with any word in a list of keywords and returns counts of occurrences of each
target word and these keywords. The results are grouped by year.

33 See defoe query modules defoe.papers.queries.keyword_concordance_by_date (for BLN and TDA) and
defoe.nzpp.queries.keyword_concordance_by_date (for NZPP).
34 CSV results: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Krakatoa_1883/results_kra
katoa_blnewspapers_1883.csv
35 CSV results: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Krakatoa_1883/results_tda
_1883.csv
36 See defoe query modules defoe.alto.queries.colocates_by_year (for BLB) and
defoe.papers.queries.colocates_by_year (for BLN and TDA).
37 Jupyter notebook: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Stranger_Danger/Stranger_
Danger.ipynb
38 See defoe query module defoe.papers.queries.target_and_keywords_by_year (for BLN and TDA).
39 See defoe query module defoe.papers.queries.target_and_keywords_count_by_year (for BLN and TDA).

As an example of the difference between these two queries, “target_and_keywords by_year” could
return:

1751:

- count: 1

 target_word: emigration

 words: [daughter, empire, indecent, marriage, mother]

- count: 1

 target_word: emigration

For the same keywords, target word and data, “target_and_keywords_count_by_year” would
return:

1751:

- [indecent, 1]

- [mother, 2]

- [emigration, 3]

- [empire, 6]

- [marriage, 1]

- [daughter, 1]

In addition, two new queries were developed:

 “keysentence_by_year” 40, which searches for occurrences of a sentence (or phrase) and
returns counts of the number of articles which include the sentence. The results are grouped
by year.

 “target_concordance_collocation_by_date” 41, which searches for occurrences of a target
word occurring with any word in a list of keywords and returns the keyword plus its
concordance (the text surrounding the keyword, in this case the 5 words preceding and
following the keyword). The filename in which the match occurs and the OCR quality is also
returned. The results are grouped by year.

4.3.1. Normalization, stemming and lemmatization

“target_and_keywords by_year”, “target_and_keywords_count_by_year”, “keysentence_by_year”

and “target_concordance_collocation_by_date” allow a user to specify the preprocessing that
should be applied to words in documents and to words provided as part of the query (e.g.
keywords). There are three types of preprocessing available: normalization, stemming and
lemmatization.

Normalization removes all non-'a-z|A-Z' characters and making the words lower-case. All queries in
defoe have been implemented to normalize words by default.

Stemming reduces normalized words to their word stems (for example, “books” becomes “book” or
“looked” becomes “look”). The Python Natural Language Toolkit (NLTK)42 implementation of the

40 See defoe query module defoe.papers.queries.keysentence_by_year (for BLN and TDA).
41 See defoe query module defoe.papers.queries.target_concordance_collocation_by_date (for BLN and TDA).
42 https://www.nltk.org/

Porter stemming algorithm43 is used, which removes common morphological and inflexional endings
from words.

Lemmatization reduces inflectional forms of normalized words to a common base form. As opposed
to stemming, lemmatization does not simply chop off inflections. Instead, lexical knowledge bases
are to get the correct base forms of words. Lemmatization is done using the NLTK WordNet
Lemmatizer44.

To see the differences, here are the results of running the “target and keywords count by year”
query over BLN and looking for occurrences of a target word, “emigration”, co-located with
keywords from a taxonomy of terms which includes the words “Colony”, “Colonies” and “Colonial”.
Using normalization only, the occurrences of these three words are, for 1901:

- [colonial, 16]

- [colonies, 28]

- [colony, 16]

Using normalization and stemming:

- [coloni, 105]

Using normalization and lemmatization:

- [colonial, 16]

- [colony, 45]

At Melissa’s request, both normalization and lemmatization were applied.

4.3.2. Normalised frequencies of the names of specific female emigration societies

“keysentence_by_year” was used to search for references to female emigration societies45 (e.g. “The
East End Emigration Fund” or “The South African Colonisation Society”). The query was run over
both BLN46 and TDA47.

43 https://www.nltk.org//api/nltk.stem.html#module-nltk.stem.porter
44 https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.wordnet
45 For a full list, see defoe’s queries/emigration_societies.txt.
46 Raw results: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/BLN_P
arts1-6/results_BLN/results_bln_society_1850_1914.txt, Jupyter notebook: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/BLN_P
arts1-6/Visualization_Frequency_Societies_BLN.ipynb
47 Raw results: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/TDA/re
sults_TDA/results_tda_society_1850_1914, Jupyter notebook: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/TDA/Vi
sualization_Frequency_Societies_TDA.ipynb

4.3.3. Normalised frequencies of female emigration taxonomy terms co-located with the
word “emigration”

“target_and_keywords by_year” and “target_and_keywords_count_by_year” were used to search
BLN and TDA for occurrences of a target word, “emigration”, co-located with keywords from a
taxonomy of terms relating to “female emigration” 48 (e.g. “colony”, “service”, or “female”,
“governess”). The query was run over both BLN and TDA, and results can be found at BLN_Results49
and TDA50 and N-grams and Jupyter notebooks at BLN51 and TDA52.

4.3.4. Concordance and collocation analysis of the term “emigration”

“target_concordance_collocation_by_date” was used to search for occurrences of a target word,
“emigration”. It was also used to search BLN and TDA for references to female emigration societies.
The query was run over both BLN and TDA datasets, and results can be found at BLN_Results53 and
TDA54.

4.3.5. Concordance and collocation analysis of female emigration taxonomy terms co-located
with the word “emigration”

“target_concordance_collocation_by_date” was used to search for occurrences of a target word,
“emigration”, co-located with keywords from the taxonomy of terms relating to “female
emigration”. It was also used to search BLN and TDA for references to female emigration societies.
The query was run over both BLN and TDA, and results can be found at BLN_Results55, and
TDA_Results56.

5. Future work
Future work on analysing historical newspapers and books and on defoe include the following.

5.1. Run Spark and defoe on EDDIE

Not all researchers have access to Urika. It is useful to enable researchers to defoe on other HPC
environments upon which, unlike Urika, Spark has not been pre-installed and configured. As part of

48 For a full list, see defoe’s queries/emigration_taxonomy.txt.
49 CSV results: https://drive.google.com/file/d/1bUB2TWZcP8kGiyOM6UI5V5-QvU-4f-vN/view
50 CSV results: https://drive.google.com/file/d/1ewliFhAIUqaNHEkeWkugYalrBKYnBCN4/view
51 Raw results: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/BLN_P
arts1-6/results_BLN/results_bln_ngram_1850_1914, Jupyter notebook: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/BLN_P
arts1-6/Visualization_Frequency_Taxonomy_Ngrams_BLN.ipynb
52 Raw results: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/TDA/re
sults_TDA/results_tda_ngram_1850_1914, Jupyter notebook: https://github.com/alan-turing-
institute/defoe_visualization/blob/b6a3f9105fddee4259c15f41fbc55594e177d3fb/Female_Emigration/TDA/Vi
sualization_Frequency_Taxonomy_Ngrams_TDA.ipynb
53 CSV results: https://drive.google.com/file/d/1bUB2TWZcP8kGiyOM6UI5V5-QvU-4f-vN/view
54 CSV results: https://drive.google.com/file/d/1ewliFhAIUqaNHEkeWkugYalrBKYnBCN4/view
55 TXT results: https://drive.google.com/file/d/1s_xRAsCm8Tp8KS8-9kKdu6_7bl9Wljov/view?usp=sharing
56 CSV results: https://drive.google.com/file/d/1fhsLJQ_nMiZjuUaDWjIQYXefJqF9B7j_/view

the BioExcel project57, Rosa developed scripts58 to deploy and configure a Spark cluster on-demand
as part of a traditional batch job submitted. These were tested on the Cirrus59 HPC service.

As part of an internal project at the University of Edinbugh, Rosa is working with Melissa and David
Fergusson of University of Edinburgh’s Information Services’ Research Data Services to customise
her scripts to run on the University’s Linux Computing Cluster (EDDIE) 60. This will allow defoe
analyses to be run by researchers who do not have access to Urika.

5.2. Redesign object models

Owing to its origins as two separate codes, defoe now has a number of object models61:

 Issues and articles. BLN and TDA datasets are parsed into this model.
 ZIP archives, documents (compliant with METS) and pages (compliant with ALTO). BLB

datasets are parsed into this model. Living with Machines uses a newspapers dataset which
is also represented as METS XML documents (one per newspaper) and ALTO XML documents
(one per newspaper page). These datasets are also parsed into this model. An abstract
model represents the ZIP archives, documents, and pages and there are concrete submodels
for BLB and the newspapers dataset in use by Living with Machines. The two submodels
handle differences in how XML documents are arranged and named within ZIP archives.

 Collections of articles and single articles: NZPP datasets are parsed into this model.

There are two problems with this design:

 The object models, and the associated query code, are based upon the physical
representation of the data. For example, BLN, NZPP and newspapers data used within Living
with Machines all contain newspapers, consisting of issues and articles, but the object model
used is issues/articles, sets of articles/articles, and issues/pages respectively.

 Python code implementing queries are also object model-specific. So, for example there are
three queries to count the number of words, one for each object model.

It would be very useful to introduce conceptual object models (e.g. books/pages, issues/articles) and
to introduce a layer to parse the physical representations of the datasets into these conceptual
object model. For example, newspapers from BLN, NZPP and the newspapers dataset used within
Living with Machines would all be mapped to a conceptual model of issues/articles. This would allow
query code to be specific to conceptual models (e.g. “count number of articles”). A base model could
represent information common to all documents (e.g. books, newspapers etc) with a
complementary set of basic queries (e.g. “count number of words”).

The ease of mapping from the physical representation to the conceptual object model depends upon
the physical representation. For example, for BLN it is straightforward, since each XML document
represents a single issue and each article is marked-up within that XML document. In NZPP, each
XML document contains one or more articles, but articles for a single issue may be spread across

57 https://bioexcel.eu/
58 Rosa Filgueira (2019) “Spark-based genome analysis on Cray-Urika and Cirrus clusters”, EPCC blog, 16 Jan
2019, https://www.epcc.ed.ac.uk/blog/2019/spark-based-genome-analysis-cray-urika-cirrus-clusters
59 http://www.cirrus.ac.uk/
60 https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/high-performance-
computing
61 For more detail, see defoe’s design and implementation notes, https://github.com/alan-turing-
institute/defoe/blob/master/docs/design-implementation.md

multiple XML files – to construct issues requires parsing multiple XML documents and reconstructing
each issue from its articles, using newspaper names and publication dates/times as the linking
criteria. For the newspaper dataset used within Living with Machines, this would require parsing the
METS metadata document and, from this, identifying which articles are present and parts of what
ALTO page documents contain the text for each article (as an article may span a number of pages)
and then parsing these page documents in turn.

Development of these conceptual object models will be done as part of Living with Machines.

